
J .  Fluid illech. (1966), uol. 24, p a ~ l  1, pp. 153-164 

Printed ita Great Britain 
153 

The spanwise perturbation of two-dimensional 
boundary layers 

By S .  C. CROW 
Graduate Aeronautical Laboratories, California Institute of Technology 

(Reccived 8 February 1965 and in revised form 10 June 1965) 

Large spanwise variations of boundary-layer thickness and surface shear have 
been found recently in wind tunnels designed to maintain two-dimensional flow. 
Bradshaw ( 1965) argues that these variations are caused by minute deflexions 
in the free-stream flow rather than by any intrinsic instability of the boundary 
layers. This paper is a study of the effect of a small, periodic transverse flow on 
a flat-plate boundary layer. The perturbation flow Reynolds number is assumed 
to be O( 1) as i t  is in the experiments. 

1. Introduction 
In  a series of wind-tunnel tests under nominally two-dimensional conditions, 

Klebanoff & Tidstrom (1959) found quasi-periodic spanwise variations of 
boundary-layer thickness of order 8 yo. Recently the phenomenon recurred 
in a National Physical Laboratory tunnel specifically designed for the study of 
two-dimensional boundary layers. Bradshaw (1965) sought a remedy as well as 
an explanation and found that these variations could result from lateral con- 
vergence or divergence of the flow downstream of slightly non-uniform settling- 
chamber damping screens. A rough analysis suggested that a boundary layer is 
surprisingly sensitive to spanwise velocity variations. The thickness variations 
found by Klebanoff could have been produced by variations in the free-stream 
flow direction of around 0.04 degree, much too small to be measured directly. 
This paper is a rigorous analysis of the effect of a small, periodic spanwise compo- 
nent of velocity on the boundary layer of a flat plate. The flow is assumed to be 
incompressible, steady and laminar. 

Three-dimensional effects in the boundary layer will depend on the transverse 
flow field chosen for the incident flow. Suppose Uo characterizes the chordwise 
component of free-stream flow, yUo the amplitude of the transverse perturbation. 
Suppose the frequency of the spanwise flow is specified by a wave-number k. 
The Reynolds number of the perturbation is then 

R = yUo/kv. 

If  Bradshaw’s explanation is correct, the value of R corresponding to Klebanoff’s 
data can be computed, and it is found t o  be around 3. It is not surprising that R 
is of order 1, since the transverse velocity variations are supposed to arise from 
the non-uniform drag of damping screens-a viscous phenomenon to begin with 
R will be regarded as a parameter of order 1 throughout the analysis. 
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2. Statement of the problem 
The momentum and continuity equations are 

V P  
P 

u.vu = --+vv2u, 

V.U = 0, 

for a steady, incompressible flow field U = ( U ,  V, W).  The co-ordinates and 
physical situation are shown in figure 1. For a characteristic speed U, and 

FIGURE 1. Sketch of co-ordinate system. 

perturbation wave-number k, the following non-dimensional variables are 
appropriate: 

u v w  (u,v ,w)  = (- U,’ - U,’ -) u, ’ 

P 
p = - .  

P u; 
The equations of motion in non-dimensional form are: 

(&momentum) uug + vu7 + wu5 = -pg + e2(ugE + u,,~ + uSb), 
(7-momentum) z q  + vv7 + wvC = --pv + e2(vgE + vT,, + v ~ ~ ) ~  
(C-momentum) uwg + vwT + wwK = -pK + e2(wgE + w~,,  + wCC), 

(continuity) u E + v , , + w ~ =  0, 

where e2 E vk/U,. If y is the amplitude of the angular variation of free-stream 
flow direction, the perturbation Reynolds number is 

R = yU,/kv = y/e2 N O(1). 
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In Klebanoff’s experiments y was typically 0.40’ - O-OOlrad., so e was about 
0.02. In  this paper B is used as an expansion parameter in a perturbation scheme. 

The boundary condition a t  the plate is 

(u, 21, w) = ( 0 , O ’ O ) .  

The upstream flow can be specified in any convenient way as long as the field 
chosen carries the desired transverse perturbation and is an adequate approxi- 
mation to a solution of the equations of motion. Let the expansions for u and w 
in the outer flow begin 

u = 1 +  ..., 
w = ~ C O S { +  ... = Re2cos[+ .... 

3. Solution far upstream 
The velocity components above cannot be worked into a uniformly convergent 

solution to the equations of motion. Since the Reynolds number of the perturba- 
tion is of order 1, the transverse field of the incident stream must decay under the 
action of viscosity. Suppose we try a solution of the form 

u =  I, 

v = R(() $7 sin {, 
w = R(()  ?COS 5, 

where v has been chosen to satisfy the continuity equation. The approximate 
momentum equation 

u[ = e2(UTv + ucc) 
is satisfied for R(C) = Roe-@g. 

In  fact, a uniformly convergent approximate solution to the equations of 
motion is 

21 = Re2r sin 5+ O(e4), 

p = po  + 4R2e4 (sin2 6- 72) + O(ea), 

w = R ~ ~ C O S  5+ 0 ( € 4 ) ,  

for that R(E). 
An expansion of the outer solution in powers of B cannot be uniformly con- 

vergent. But such an expansion converges over an arbitrarily large interval A& 

A t  < l/s2. where 

As long as attention is confined to such an interval AC, a straightforward expan- 
sion in powers of e can be carried out, and the upstream boundary conditions may 
be taken as 

= 1 +0(e4), 

= RG cos 5 + o(e4), 

v = Re27sin5+O(e4), 

where change in R is now contained in the O(e4) corrections. 
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4. Outer expansion 

are expanded in powers of E as follows: 
Let 6, 77, y remain fixed. and allow E to tend to zero. The dependent variables 

'1L = 1 + E f l f t ,  7, a + eYz(5, 776) + . . ., 
2, = %(f,7,5) + E.2g2(5, 9,6) + . . . 3  

U )  = R E ~ C O S ~ +  ..., 

P = Po +EP1(fT7 7, 6) +e'P2(t> 7, 6) $- ..'. 
When the coefficients of consecutive powers of E in the equations of motion are 
set equal to zero, the following system of equations results: 

Continuity 

O ( 4  fl(+ Slq = 0, 

O(s2)  fi5+gz,-Rsin~ = 0. 

No boundary conditions are available at  the plate. The outer expansion must 
be matched to an inner (boundary-layer) expansion there. In accordance with 
the discussion of the previous section, the conditions far upstream arc 
fl,f2,f3,gl+0. 'Far upstream' means - f T  P 1; we cannot really permit 
- fT -f co, since the expansion form assumed is valid only in an interval A( << ~ 2 .  

5. Inner expansion 
An expanded boundary-layer variable 8 = Y / E  must be used to bring out the 

behaviour of the fluid near the plate. Then let fT,  d ,  6 remain fixed, and allow 8 to 
approach zero. The dependent variables are again expanded in powers of E :  

u = mfT>r?, 6) + 4 ( 6 ,  q, c;) + EZPZ(t, q, 6) + . . ., 
2, = €Gl(5,r",6)+e2G2(5,r",6)+.. . ,  
w = €2Hz($, r", 6) + . . . , 
P = Po + E P l ( 5 ,  r", 6) + E2Pz($, r", 6) + . .. 
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The equations of motion split up into the following system: 
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At the plate all terms in the expansions of u, 21, w are zero. Further conditions 
are provided by matching the inner and outer solutions in an intermediate region 
where they are simultaneously valid. 

6. Matching 
The forms assumed for the inner and outer expansions are valid only if the 

solutions based on them can be matched. Since matching must be done step-by- 
step in the analysis which follows, general equations for the procedure are derived 
here. 

Consider the inner and outer expansions of any dependent variable a:  

(inner) a = A 0 6  r", 6) + 4 ( 6 ,  r", 5) + c2A2(6, r", 5) + * .  *, 

(Outer) a = a O ( ~ , T , ~ ) + e a l ( 6 7 T , 5 ) + ~ 2 a 2 ( 6 , T , ~ ) + . " .  

The matching is done on an intermediate variable 7" = ~ / h ( c )  such that, for y* 
fixed and c -+ 0, 

4 s )  = h(€)?/*-fO, ?j = cT*+"o .  

The outer solution may be expanded around 7 = 0 in the form 

a = a, + A,. a,, + €al + shy*u,, + &iy*)2;ao,, + c2a2 + . . . , 
where the arguments of each function on the right are (6,0, 5). The inner solution 
has the form 

h h 
a = A0 (6 ,  ; 7*, 5)  + €4 (6 ,  1 T " ,  5) + €2A, (6, ; T* ,  5) + . . . . 
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In  order for the two expansions to match for q* fixed and E + 0, the following 
conditions must hold : 

AO(t7 00, !3 = ao(t, 0 7  0, 
lim Al(t, r", = $a,,(& 0,C) + a1(5,0, 5 1 7  

q-.m 

7. Initial steps in solving the problem 
The solution must be carried to second order in e to show the most interesting 

effects produced by the transverse field of the incident flow. The programme can 
be carried out by finding solutions to it sequence of groups of the equations 
(1)-( 18). The functions Fo, F,, G,, G,, H,, f,, f,, g,, g2 are found that way in the 
five steps of this section. That is preliminary. The effect of the transverse field 
on the chordwise flow is uncovered only when F2 is found, and that is deferred 

At the beginning of each of the steps below the ingredients needed are listed- 
the equations from the system (1)-(18), the boundary conditions, and the 
matching conditions, 

to $8 .  

First step-determining Fo and G, 

boundary conditions: Fo(& 0,c) = 0,  (a)  

matching condition: Po(& co, 6) = 1. ( c )  

equations : (9)) (16) 

Gl( t ,  096) = 0, (b)  

Let Fo = $#. Then equation (16) becomes 

Hence 

where fn((,<) is zero if (b)  is satisfied by putting IjfE(t,0,5) = 0. Equation (9) 

Then 9 ( s )  satisfies 

Fo and G, become Fo = F'(s), 

G, = (1/.J(2t)) [ S F ( S )  - S ( S ) l ,  

9 ' (0)  = P ( 0 )  = 0, F ( m )  = 1. 

so conditions (a), (b) ,  (c) are 

F ( s )  is thus the Blasius function. Suppose p is defined as follows: 

l imF(s)  = s-,8. 
s+w 
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lim Gl(C,Y) = (1/4(26)) lirn (8F-9) = ,8/1/(2Q. 
$ 4 0 3  8’03 

Then 

Notice Fo and G,  do not depend on 6. 
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Xecod step-determining H, 

(5), (61, (1313 (15) equations : 

boundary condition: H2(t ,  0 ,  6) = 0, (a)  

(4 
matching conditions: H2(C, O O , ~ )  = R cos 6, (b )  

lim P2(5, 970 = YPl&, 0, 6) +P2(5,0,6).  
++m 

The matching conditions here, as elsewhere, are applications of the general 
matching equations derived earlier. (c) ,  for example, is the second-order 
matching condition for p with pOq9 = 0. Equation (13) may be written 

P2i, = c;11%.jj - Fo Gls - GI Glq. 

Since Po and G, do not depend on 5, Pzqs = 0, so Pzr; = fn (E ,  6). Differentiating 
(c) on 5 and using equations (5) and (6) yield lim PZs = 0. Thus 

Pzc = 0 

everywhere. Equation (15) then becomes 

+ G1H2, = Hzqq, 

which is the same as equation (9) if H, = fn (5) Fo(& 9). The solution satisfying 
conditions (a) and (b )  is 

Thus the spanwise flow follows the Blasius profile to the order considered. 

H2 = RFo cos = RF’(s) cos 6. 

Third s t eee t e rmin ing  fl, g, and p ,  

equations: (11, (31, (5)7 (7)  

matching condition: GI(& 00) = gl(& 0,6). (b )  

boundary conditions: fi, gl+ 0 far upstream, (a )  

Equations (1) and (3), fls = -pls and gls = -p19,  combine to give the equation 
for conservation of spanwise vorticity, 

(sl(-flq)[ = 0. 

g 1s -f 4 -0 .  - 

Pl = -f1* 

By the upstream conditions (a),  

Equations (l), (3) and ( 5 )  then imply 

Since the spanwise vorticity is zero, there is a potential function #J such that 

fl = 4p 91 = $7, 

and equation (7) becomes 465 + $77 = 0. 
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Condition (b)  and the expression for GI((, co) found in the first step give 

A)(" 0) = PI&[) 

over the plate. # is thus the linearized potential for flow around a thin parabolic 
cylinder (van Dyke 1964). The solution satisfies 

fi(510) = -PI(& 0) = 0 

next to the plate, and f, and g, do not depend on 5. 

Fourth step-determining F, and G', 

equations: ( lo) ,  (1% (141, (17) 

boundary conditions: F,(t, 0,c) = 0, (4 
G,(t, 095) = 0, (b )  

(c) 

PIK m,5) = Pl(& 0) = 0- (4 
matching conditions: Fl((, co, <) = fi(t, 0) = 0, 

Since equations (12) and (14) imply PI = P,(<), condition (d )  requires P, = 0. 
Equations (10) and (17) are thus homogeneous and linear in F, and G,, and the 
only solution compatible with conditions (a),  (b)  and (c) is 

PI = G, = 0. 

Fifth step-determining f2,  g2 and p 2  

equations : 6% (413 (61, (71, (8) 

boundary condition: f ,  -+ 0 far upstream, (a) 
ygl,([, 0) +g2(5, 0, 5) = lim G, = 0. matching condition: (b )  

tl+W 

By equation (7) g,, = -fit, and from the third stepf,(& 0) = 0. Hence 

91,(5,0) = 0, 

9 2 ( &  095) = 0. 

f i t  = - Wft + 9 3  +P2)@ 

9% = - Mft + 9 3  + PZhp 

P g  = 0, 

fy+92, = Rsin5, 

and (b)  becomes 

In the third step it was shown that fl, = g,,, so equations (2), (4), (6) and (8) 
can be written 

and the solution satisfying conditions (a)  and (b )  is 

f 2  = 0, 

Pi? = - 9(ft + 93. 

g, = R, sin c, 
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8. Final steps to determine F, 
In  the last section it was shown that the first-order correction to the chordwise 

boundary-layer profile is zero. If the theory is going to account for the large 
boundary-layer thickness and shear variations observed by Klebanoff and 
Bradshaw, those effects will have to show up in the function F, yet to be calcu- 
lated. The trouble is that even in the strictly two-dimensional case there is a 
second-order correction to the Blasius profile. Since the perturbation equations 
are linear in the functions still uncomputed, solutions can be superposed, and the 
contribution of the transverse field can be separated from the two-dimensional 
part of the solution. The two-dimensional part decreases toward zero down- 
stream, but the part driven by the transverse field increases rapidly. 

The pressure function P, 
By means of the expressions for Fo and G, derived in the last section, equation (13) 
can be written 1 

PZs was found to be zero. If Pz takes the form 

p2 = %% 
8’ = &[$’I + s$12 - 9 9 7 1 .  then 9 must satisfy 

As s-fco,  .9”-+&/3, and the form assumed for P, is valid only if that limit is 
compatible with the matching condition 

But from equation (3) and the work of Q 7 

P18(5, 0) = -91& 0) = - GI&, = P/254(20,  

p,(L 0) = - Qg”l5, 0) = -P2/45. 

Hence lim P2 = 

which is compatible with the form assumed earlier if the constant of integration 
for B is chosen such that 

B ( s )  + Bps - &I2 as s --+ co. 

i j - t  m 

Transformation of the equation for F, 

Since Fl = G, = Fos = 0 and H, = RFo cos g, equations (1 1) and (18) are 

F ~ F ~ , + F ~ F , F , + G , F ~ , + G ~ ~ ~ F ~ ,  = -pq+Fo,+F,,q, 
F2[ + GBq = R sin g F,. 

Let Fo = @, as before, and let F, = xq. Then the continuity equation becomes 

Hence 
11 

XJ, + G3, = R sin 5@ii. 
G, = R sin C@ - xc + fn (t, 0 

Fluid Mech. 24 
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and fn (&c)  = 0 if the boundary condition GJC, 0,C) = 0 is satisfied by requiring 
x & O ,  5) = 0. Now transform 

(L r”, 6) 5 ( t - 2  8, Y), s = r“/4(28,  

in the momentum equation. Thus 

x(5,  c, C)  = X ( &  s,C), 

x,,, + FX,, - 2g F X S S  + 2&%7’Xg + F X ,  

and Po, G, and Pz are already known in terms of the new variables. The equation 
becomes 

The boundary conditions a t  the plate are 

X,(5,0,5) = 0, X,(& 0,C) = 0, 

and, say, x ( 5 , 0 , 5 )  = 0. 

The matching condition for P2 is 

lim 4 = 9fl& 0 )  + f 2 ( 6 ,  0). 
i l - -m 

From the last section fi = 0 and f i l l (& 0) = gl&& 0)  = -P/2[2/(25). 

Hence 

and 

It is easy to show by direct substitution that that limit is compatible with the 
transformed momentum equation. 

Separation of X into two- and three-dimensional parts 

In  the transformed momentum equation there is one term which is modulated 
by R sin 5; there are no such terms in the boundary conditions. That term reflects 
the R sin <$ part of CT, and is a forcing function imposed by the transverse field 
through the continuity condition. X can be written as a sum of two parts, one 
proportional t o  R sin Sand the other not involving Sat all. The first term responds 
to the forcing function proportional to R sin <and obeys zero boundary conditions 
all around. The second term responds to  the two-dimensional forcing function 
and satisfies the X ;  limit for s -+ 00. Thus write 

f ( s )  and S ( s )  are defined by separate differential equations and boundary 
conditions: 

i J?” + g-$“ - 29y‘ + 3F‘y = 4 9 p ,  

$ ( O )  = $’(O)  = 0, ,f’(.o) = 0, 

9(0) = S ’ ( 0 )  = 0, lim 9 ( s )  = -Ps. 
JV + gy” + 23z32’ - = - 493 - 2sP‘ - s2F“ - 3&97“, 

s-w 
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If the spanwise vorticity is to decay exponentially far from the plate, 9 ( s )  must 
contain an O(1og e) term (Van Dyke 1964). There is no need to find out more about 
9 ( s ) .  The important point is that the two-dimensional contribution X approaches 
zero as f: becomes large, and the three-dimensional term grows as @. 

P2 and the boundary-layer projile 

The $ equation with its boundary conditions has a simple solution- 

y = F - S F I ,  

*/// + FFf‘ = 0 

F2 = xs = X8/,/(2E) = - +REsin [ s P  + 9 ‘ / 2 5 .  

that can be verified by direct substitution using the Blasius equation 

and its derivative. Then 

The boundary-layer profile is 

u = T ( s )  - +Re2csin [sF”(s) + e2(4’(s)/2&3 + O(e3). 

Notice the expansion is not uniformly convergent. The second term is much 
smaller than the first only if 5 < 1/e2, but that is assured by the restriction 
A( Q l/e2 already imposed to make the outer flow tractable. The third term is 
small if $ e2, the usual requirement for convergence of the boundary-layer 
expansion. 

The first two terms of the profile expansion can be combined into a single 
function 

with third-order accuracy. Then 

where 

u = F(s*) + (€2/2t)  S f ( s * )  + 0 ( € 2 ) ,  

s* = s / (  1 + +y[ sin c), 
and y = Re2. Thus the shape of the profile is unaffected by the transverse field. 
Even in the second-order approximation, the only three-dimensional effect is 
a spanwise variation in boundary-layer thickness. 

9. Conclusion 

variables the inequality can be written 
For the profile expansion to be valid, 6 must satisfy e2 Q 6 Q 1/c2. In  physical 

vk/Uo Q kx < R/y, 

and in that interval, expressions good to O(y) for U and W are 

where 
2vx 

b = ~ (1  + +ykxsin kz).  
UO 

11-2 
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Thus the boundary layer takes on the wavy character illustrated in figure 1. The 
practical significance of these results is discussed by Bradshaw (1965). 

This work was begun under the inspiration of Peter Bradshaw and Trevor 
Stuart at the National Physical Laboratory and was continued with the guidance 
of Philip Saffman a t  Caltech. I thank them all for their help. 
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